FEU Institute of Technology

Educational Innovation and Technology Hub

Loading...

Elisa V. Malasaga

Associate

FEU Institute of Technology

Seminars and Trainings

Attendee

ISO 9001:2015 Retooling

Awarded by FEU Tech Quality Assurance Office on October 03, 2024

View Credential

Attendee

AI in the Workplace: Practical Applications for Educators and Associates to Improve Teaching and School Management

Awarded by Educational Innovation and Technology Hub on August 14, 2024

View Credential

Attendee

Data Privacy Act Awareness Seminar

Awarded by FEU Tech Human Resources Office on August 07, 2024

View Credential

Attendee

Nanolearning: Bite-Sized Content as the Next Big Trend in Contemporary Education

Awarded by Educational Innovation and Technology Hub on December 12, 2023

View Credential

Attendee

Tech-Enabled Pedagogies: Empowering Modern Teachers with Educational Technologies

Awarded by Educational Innovation and Technology Hub on August 09, 2023

View Credential

Research Publications

Powered by:

Conference Paper · 10.1109/ITIKD63574.2025.11005019

Utilizing Modified Viterbi Algorithm for Religious Text: A Cebuano Part-of-Speech Tagging

2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD), (2025), pp. 1-6

View Paper

Part of speech tagging (POS) is crucial in natural language processing, identifying the grammatical categories of words in sentences. This research highlights the lack of focus on POS tagging for Asian languages, particularly Cebuano. Inadequate research on Cebuano religious text has hindered linguistic documentation and understanding its grammar and vocabulary. This study introduces a Parts-of-Speech Tagging for Cebuano utilizing a Modified Viterbi Algorithm. The researchers also apply a method for handling unfamiliar words. Results indicate that the algorithm performs exceptionally well on a religious text corpus comprising 50,000 datasets, achieving an accuracy of93%,precision of90%, recall of 90. 52%, and an F1-score of92%. These results highlight the algorithm's effectiveness in tackling language challenges within specific genres. Furthermore, the research supports the Sustainable Development Goals (SDGs) by promoting linguistic diversity and advancing inclusive language technologies. The study also provides valuable insights into Cebuano's linguistic characteristics and grammatical structures, laying a solid foundation for future research in natural language processing.

Conference Paper · 10.1109/HNICEM60674.2023.10589068

Analyzing Machine Learning Algorithm Performance in Predicting Student Academic Performance in Data Structures and Algorithms Based on Lifestyles

2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), (2023), pp. 1-4

View Paper

This research study employed machine learning algorithm in This research study employed a machine learning algorithm in predicting student academic performance in the Data Structures and Algorithm (DSA) course which is based on student lifestyle to analyze the factors that affect the high or low performance result. A total number of 251 Bachelor of Science in Computer Science (BSCS) students participated in the study where 207 or 82% were male and 44 or 18% were female. A oneshot case study was conducted that led to data collection through the administration of an online survey on former enrollees of the said course. The dataset was extracted with 43 features and was analyzed using Python on Jupyter Notebook. Randomly selected 70% of these, 176 observations, are used to train the classifier models. The remaining 30%, 75 observations, were used as the test data. In order to classify academic performance students, eight machine learning algorithms were applied based on random forest (RF), decision tree (DT), support vector machines (SVM), K-nearest neighbors (KNN), logistic regression (LR), Gaussian Naive Bayes (GNB), stochastic gradient descent (SGD), and perceptron. Although SGD and Perceptron classifier models show comparably low classification performances, both random forest and decision tree classifiers provided the highest metric performance. The study indicated that the lifestyles of students contributed to whether the student performance became high or low in their grade performance.

Conference Paper · 10.1109/HNICEM57413.2022.10109537

Analysis of C Programming Performance: A Correlational Study of Novice Programmers’ Compiler Error Logs

2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), (2022), pp. 1-5

View Paper

Computer programming is now one of the most critical competencies taught in computer courses. [1]. Students require any assistance they can get when learning programming in order to acquire the necessary abilities to excel in the field of computing [2]. This paper aims to investigate the C compiler error logs of Computer Science freshmen students. A prototype was developed and pilot-tested to obtain C source code snippets focusing on assignment statements. The dataset consisting of 1013 logs were extracted from the initial prototype then followed the data science approach of [3] for pre-processing. A Person correlational analysis was conducted on eight features to investigate the relationship between all variables in the dataset. Results of the study show that there is a strong relationship between wrong expression and operator (0.806), wrong expression and numeric value (0.794), operator and numeric value (0.663). Implications of this study is also helpful to computing instructors to improvise the delivery of their teaching pedagogy.

Conference Paper · 10.1109/HNICEM57413.2022.10109576

Data Analysis and Constraint-Based Modeling of Novice C Programming Error Logs: An Input for Developing Intelligent Tutoring System

2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), (2022), pp. 1-6

View Paper

Computer programming is one of the fundamental skills in the field of computing [1]. In a computing class, students are expected to learn the skills rather than remembering materials only. This study aims to develop a constraint-based student model (CBM) by analyzing the computing students' C compilation error logs. The proposed modified CBM will be used as input to develop a user behavior of an ongoing study for an intelligent tutoring system. The prototype was developed to obtain compilation error logs from the selected students, it contains five (5) C programming questions that focus on assignment statements. The prototype of the study was pilot tested on two (2) online programming classes with a total of thirty-one (31) freshman college students composed of nine (9) BSCS and twenty-two (22) BSIT participants with a mean age of 18.68, where nineteen (19) or 61.3% are males and twelve (12) or 38.7% are females. The study uses convenience sampling to determine the total number of student participants. The dataset was extracted from the prototype and feature identification was performed on one thousand thirteen (1013) C programming logs which resulted to obtain eight (8) error types. The paper of Khodeir, Wanas, & Elazhary (2018) [2] and Karaci (2018) [3] on constraint-based modeling was reviewed to develop a proposed constraint-based model in the context of C programming focusing on assignment statements. By mapping a student error on the suggested constraint relevance (Cr) and constraint satisfaction, the database for constraints was finished (Cs).

Conference Paper · 10.1109/HNICEM54116.2021.9731857

Complete Blood Count (CBC) Analysis Mobile Application

2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), (2021), pp. 1-6

View Paper

Complete Blood Count is one of the most commonly performed medical laboratory procedure today. It is required to detect various types of diseases. Presently, some small-scale clinics in the country still does the tedious, manual method of counting the blood cell. With Complete Blood Count Analysis System through Image Processing, automated CBC can be performed by mounting the smart phone camera on the viewer of the microscope. The input image will go through several image processing algorithms such as: Binary Thresholding, Clustering, and Hough Circle Technique. The result will be computed through the formulas used in the manual method of the CBC process. Experimental results show the developed system gains 94% of accuracy for counting the Hematocrit, Hemoglobin, Red Blood Cell, and White Blood Cell values.

Much lighter than a real briefcase, and just as packed with potential!

Briefcase is a LinkedIn-style social media platform that empowers the FEU community to showcase their accomplishments within both the academic and professional spheres.

© 2025 Educational Innovation and Technology Hub. All Rights Reserved. Trademarks and brands are the property of their respective owners. The use of company logos alongside accomplishments is for identification purposes and does not imply endorsement or affiliation with the mentioned companies.